
Welcome to the Nao Personal Webserver

Requirements:

 Windows Win32/64 (Tested on Windows 7)

 Python for Windows (Tested with Python Dll: 2.7.3)

 Python SDK 2.7 1.12.5 Windows 32bit x32 (Aldabaran Software
Development Kit)

* 1) Installation

 NPWS Folder structure

* 2) Startup and checking system

 Python Installation Check

 Execute a test script on the Nao

 Set the user login information and start the Server
o Set the user login information

* 3) Start the server

 Using the webbrowser client menu
o Login Screen
o Client Main Menu
o Client System Menu
o Client Script Menu
o Client Script Menu with parameters

* 4) Create your own Client Sub Menu's and execute scripts on the server.

 How does it work..

http://www.python.org/download/releases/2.7.3/
http://developer.aldebaran-robotics.com/resources/

1) Installation:

Extract the zipfile on a disk and create a shortcut to the
"NaoPersonalWebServer.exe" or just dbl-click on this executable to
start the program. The executable is using the network connection, so
expect messages from firewall applications.

NPWS Folder structure:

* css (npws style sheets)

* images (npws images)

* js (npws javascripts)

 jquery
o images
o themes
o ui

 jquery.mobile-1.0

* scripts (user and npws scripts)

* templates (npws html templates)

2) Startup and checking system:

If the NPWS startup without any error messages, two checks must be
done to see if the program can see the Python installation and if the
program can execute a Python script on the Nao.

Python Installation Check:

This is a quick check. Open the "Python" section of the NPWS and see
if the Python information is displayed. If you don't see any information,
be sure you have installed Python on your machine. See above
"Requirements".

Execute a test script on the Nao:

Open the "Script Test" section of the NPWS and notice the small test
script. Change the IP-Address and Port in the script to match it with
you Nao settings. Press on the "Script Test" button to execute the
script.

If you check the "Enable IO" checkbox, any Python messages will be
displayed in the "Python" section where the Python information is
displayed.

If your Nao speaks "Nao Personal Webserver", the NPWS is
successfully installed. If you don't get any response or an error
message is displayed, be sure you have installed the Aldebaran
Python SDK. See above "Requirements". You can change this test
script if you like. The NPWS will remember this script if you close the
program.

Set the user login information:

Before we can start the server, the user login information must match
the settings of the Nao. In this way the server can handle more Nao's
or handle one Nao if you switch for example the network where your
Nao is connecting to. You can login as another user instead of
changing the IP all the time.

The user login information is stored as a XML file on the NPWS
program folder. (users.xml) This file can be edited by an XML editor or
by a special dialog in the NPWS program. Change one of the users to
match it with your Nao settings. (Right-Mouse Click for popup window

or press on the name in the tree to edit directly)

3) Start the server:

The Start button:

Start the server by pressing on the red start button in the "Start"
section. The button will change to green. Look at the information in the
"Configuration" section. Here you can see the sever IP and Port. Any
browser on the same network can connect to the server by using this
IP and Port. If you use a port other than 80, you have to add it to the
URL in the browser. For example for the screenshot under it will be
"http://192.168.1.3:8080/". If you press on the globe button in the
"Start" section the default web browser is started and a connection with
the server is made using "localhost" as IP.

Using the web browser client menu :

Login Screen:

This is the start screen of the NPWS web browser client. Fill in a
username and password using the information added by "Set the user
login information". Press the Login button to open the client main
menu.

Client Main Menu:

This is the current main menu. Press on the "System" button to see if
we can ask Nao's system information, start behaviors and execute
internal server Python test scripts.

Client System Menu:

This is the current system menu. Press on the "Configuration" button to
see if we can ask Nao's system configuration. Try to start behaviors
and try execute internal server Python test scripts.

Warning ! The memory menu is still in development. The memory
overview has been split into three parts (General, Device and
SubDevice) but they are still too large. The General overview is also
not OK yet. Asking these overviews can result into a timeout. I had
some good results using the Chrome Browser. This browser will ask
you to if the browser should wait for result. Other browsers can crash
the server. These overviews need to be split later into alphabetic
views. (A,B,C,...)

The Server Test are two internal server scripts compiled into the
server. The "Say"button will show a simple "speak" menu. Fill in a word
or sentence and Nao should say this. The calculate is an idea still in
development. You can fill in a calculation like "2+2*4". If executed, Nao
will say the calculation and the answer. (still all very basic..)

Client Script Menu:

Go back to the main menu and press the "Scripts" button. This is the
core menu of the NPWS. With this Script menu the users are able to
make their own submenu's and execute self made Python scripts on
the server.

Press on the "Say IP Script". The system will start the "say.py" script
located in the scripts folder.

from naoqi import ALProxy

tts = ALProxy("ALTextToSpeech",str(npws.ip),npws.port)

tts.say("message is "+str(npws.ip))

npws.html="executed : say.py"

Inside the script you can use the npws class created by the server.
There are four fields published.

1) npws.ip : this is the IP of the login user Nao IP.
2) npws.port : this is the Port of the login user Port.
3) npws.html : this can be filled by the user and will be used as a return
page in the client webbrowser after the script has been executed. It
supports basic html syntax.
4) npws.input : See under, when using input parameters in the menu.

Client Script Menu with parameters:

It is also possible to create a menu with Input fields. These field
parameters will be transfered to the script where the user can use them

inside the script. Press on the "Sub Menu" button to open an example
menu with three input fields.

Press on the "SayInput Script". The system will start the "sayinput.py"
script located in the scripts folder.

Inside the script you can use the npws class created by the server. You
can use the ".input" field array of the class to read the values added in
the client input fields. The fields in the array are in the same order as
the input fields of the menu.

from naoqi import ALProxy

tts = ALProxy("ALTextToSpeech",str(npws.ip),npws.port)

#fill the npws.html with info. This will be returned to the client

after the script has been executed.

npws.html=''

#go through the npws.input list and take the value in the inputfield

var.

#let Nao say these inputfields

for inputfield in npws.input:

 tts.say(inputfield)

 npws.html=npws.html+' '+inputfield

npws.html=npws.html+''

#return also the Nao IP and Port to the client.

npws.html=npws.html+''+npws.ip+''+''+str(npws.port)+''

The script above will return the following page by the npws.html field.
As you can see the html "li" tag will create a row in the page.

4) Create your own Client Sub Menu's and execute scripts on the server:

The client menu is stored as a XML file on the NPWS program folder.
(menu.xml) This file can be edited by an XML editor or by a special
dialog in the NPWS program.

Note : It will take some time to add all the edit possibilities in the NPWS
menu editor. Like moving menu's and items up and down (re-order) is
not supported yet.

Left: Server side - NPWS program with menu edit dialog. (add and edit
menu's)
Middle: Client side (web browser) - User Menu.
Right: NPWS Menu XML.
Right Bottom: Folder with Python scripts that are executed by the
menu.

There are six different tags for the menu XML:

Menu: New Submenu.

MenuName: Name of the menu displayed as header text.

MenuItem - ItemName: Button with ItemName text.

MenuItem - TargetName: Python script filename OR Menu -
MenuName (submenu).

InputItem: Editbox for script parameter.

DisplayName: Headertext for editbox.

How does it work..:

A "Menu" tag will create a new submenu with a header
text of the "MenuName" tag.
A "MenuItem" tag creates a button with a text of the
"ItemName" tag.
The "TargetName" tag is used to define the Python
Script that will be executed BUT if the "TargetName" tag
has the same name as another Menu "MenuName", the
system will create a button targeting this menu and NOT
using this "TagetName" tag to execute a python script. In
this way the user can create more submenu's.

So, the server will figure out if the "TagetName" is used
as "MenuName" and will create a button targeting this
other menu and if no "MenuName" is found the server
will create a button that will execute a python script with
the name "TargetName".

In the example above you see two submenu's. "Script
Menu" and "Sub Menu".
In the "Script Menu" you see two "Menu Items".
The first item has a "TargetName" "Sub Menu" and
because the second menu "MenuName" is "Sub Menu"
the server will create a button targeting this second
menu.
The first menu has also a "MenuItem" with "ItemName"
"Say IP Script" and because there is no other menu with
this "MenuName", the server will create a button that
executes a Python Script with the "TargetName" "Say".

